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Supplementary	Figures	
	

Supplementary	Figure	1a.	Flowchart	for	binless	preprocessing	
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Supplementary	Figure	1b.	Flowchart	for	binless	normalization	
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Supplementary	Figure	1c.	Flowchart	for	binless	interaction	detection	
	 	

Output CSnorm object 
with signal/differences

Grouping, interaction 
 and difference detection

input normalized 
CSnorm object

Compute 
background

Group datasets 
if requested

Compute signal or 
difference matrix

Cross-validate 
smoothness, 
threshold and 

exposures

everything 
converged?

YesNo



	
	
Supplementary	 Figure	 2.	 Patch	 statistics	 in	 the	 binless	matrix	 of	 a	 1Mb	 example	
region	 (HIC003,	 hg19	 [4],	 called	 “Replicate	 H”	 in	 [34]).	A)	 binless	 signal	matrix	 of	 the	
region,	with	 three	patches	of	 varying	 sizes	highlighted.	B)	Distribution	of	patch	 sizes	 in	
the	 binless	 matrix.	 Patches	 are	 grouped	 in	 three	 size	 categories	 for	 illustration.	 C)	
Distribution	 of	 the	 number	 of	 reads	 per	 patch.	 D)	 Distribution	 of	 the	 read	 density	 per	
patch.	
	 	



	

	

Supplementary	Figure	3.	Base-resolution	 representation	of	 a	10kb	 region	 on	 the	
TSIX	gene	in	four	different	datasets	(data	from	[4]).	A)	MboI	HIC001-HIC018	combined.	
B)	MboI	HIC006.	C)	HindIII	HIC035.	D)	NcoI	HIC036.	
	
	 	



	

Supplementary	 Figure	 4.	 Binless	 data	 smoothing	 for	 the	 SELP	 gene	 locus	 in	 the	
human	 chromosome	 1	 (data	 from	 [4]).	 A)	 ι	 genomic	 bias.	 	 Vertical	 lines	 are	 cut	 site	
locations.	Right	labels	are	percent	of	reads	used	for	normalization.	Smaller	quantities	of	

data	 lead	 to	a	smoother	bias,	which	 indicates	 that	Generalized	Additive	Models	do	not	

overfit	 the	 data	 and	 can	 be	 used	 for	 normalization	 of	 Hi-C	 experiments.	 B)	 The	 same	

trend	is	observable	in	the	diagonal	decay.	

	 	



	

	
Supplementary	Figure	5.	Effect	of	subsampling	on	binless	matrices.	Zoom	on	the	5Mb	
region	chr22:30000000-35000000	of	the	combined	data	from	all	IMR90	replicates	of	Rao	

et	al	 (HIC050	to	HIC056).	Between	1%	and	100%	of	the	data	was	subsampled	randomly	
and	normalized	using	Binless	on	the	whole	chromosome	22	at	5kb	base	resolution.	From	
left	to	right:	Raw	data	at	5kb	and	10kb	resolution,	binless	matrix,	signal	matrix	and	virtual	

4C	on	a	5kb	viewpoint	at	chr22:32525465-32530465.	For	this	 last	plot,	observed	data	is	

dotted,	and	solid	lines	correspond	to	the	binless	matrix	row.	

	 	



Supplementary	Figure	6.	Binless	matrices	lead	to	increased	reproducibility	in	Hi-C	
matrices	at	all	resolutions.	A,	B:	stratified	correlation	coefficient.	A:	technical	replicates,	
B:	different	enzymes.	(see	methods	for	details	and	Sup.	Table	panel	8	for	sample	sizes).	

	
	



Supplementary	Figure	6	(cont.)	C,	D,	E:	reproducibility	index.	C:	technical	replicates,	D:	
biological	replicates.	E:	different	enzymes.	(see	methods	for	details	and	Sup.	Table	panel	8	
for	sample	sizes).	

	
	 	



	
	

Supplementary	Figure	6	(cont.)	F,	G,	H:	spearman	correlation.	F:	technical	replicates,	G:	
biological	replicates.	H:	different	enzymes.	(see	methods	for	details	and	Sup.	Table	panel	8	
for	sample	sizes).	

	 	



	
	

Supplementary	Figure	6	(cont.)	I,	J,	K:	Pearson	correlation	(after	background	
adjustment,	see	methods).	I:	technical	replicates,	J:	biological	replicates.	K:	different	
enzymes.	(see	methods	for	details	and	Sup.	Table	panel	8	for	sample	sizes).	

	 	



Supplementary	Figure	7:	False	positive	 rate	 in	Binless	 is	maintained	below	2.4%	on	
average.	Each	box	reports	the	false	positive	rate	at	several	resolutions,	for	each	interaction	
detection	method.	 (see	methods	 for	 details	 and	 Sup.	 Table	 panel	 9	 for	 total	 number	 of	
annotated	true	negatives)	
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Supplementary	Figure	8:	Example	 loci	 for	all	produced	outputs.	A:	TBX3	 locus	 (Rao	
HIC055	 chr12:114M-117M	 at	 5kb	 resolution).	 Top	 row,	 from	 left	 to	 right:	 raw	 matrix,	
vanilla	 by	 chromosome,	 vanilla	 whole-genome,	 ICE	 whole-genome.	 Middle	 row:	 oneD,	
HiCRep,	Binless.	Bottom	row:	diffHic	 enrichment,	 shaman	 score,	HiCRep	 z-score,	Binless	
signal.	

	 	



Supplementary	Figure	8	(cont.)	B:	ADAMTS1	locus	(Rao	HIC056	chr21:26M-30M	at	5kb	
resolution).		

	 	



	

Supplementary	 Figure	 8	 (cont.)	C:	 FOXP1	 locus	 (Jin_hESC_HindIII_A	 chr3:69M-73M	 at	
20kb	resolution).		

	 	



	

Supplementary	 Figure	 8	 (cont.)	D:	 SEMA3C	 locus	 (Rao	HIC003	 chr7:80M-82M	 at	 5kb	
resolution).		

	 	



Supplementary	Figure	9.	Example	of	difference	calculations	with	Binless.	ADAMTS1	
locus	(chr21:26M-30M,	Rao	HIC003	vs	HIC054).	A:	Raw	data.	B:	binless	matrix.	C:	binless	
difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
TBX3	locus	(chr12:114M-117M,	Rao	HIC003	vs	HIC056).	D:	Raw	data.	E:	binless	matrix.	F:	
binless	difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
SEMA3C	locus	(chr7:80M-82M,	Rao	HIC003	vs	HIC056).	G:	Raw	data.	H:	binless	matrix.	I:	
binless	difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
FOXP1	locus	(chr3:69M-73M,	Rao	HIC003	vs	HIC056).	J:	Raw	data.	K:	binless	matrix.	L:	
binless	difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
BCAM	locus	(chr19:43M-46M,	Rao	HIC003	vs	HIC056).	M:	Raw	data.	N:	binless	matrix.	O:	
binless	difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
CRYZL1	locus	(chr21:32M-34M,	Rao	HIC022	vs	HIC056).	P:	Raw	data.	Q:	binless	matrix.	R:	
binless	difference	matrix.	
	 	



Supplementary	Figure	9	(cont.).	Example	of	difference	calculations	with	Binless.	
SHANK3	locus	(chr23:49M-51M,	Rao	HIC022	vs	HIC056).	S:	Raw	data.	T:	binless	matrix.	U:	
binless	difference	matrix.	
	 	



Supplementary	Figure	10.	Paired-end	read	classification.	For	proper	classification,	 a	
number	of	parameters	must	be	defined	beforehand	(see	also	Sup.	Fig.	11):	

• readlen:	length	of	reads,	as	output	by	the	sequencer	
• maxlen:	maximum	size	of	sonication	fragment	
• dangling.L	 and	 dangling.R:	 relative	 positions	 at	 which	 restriction	 enzymes	 are	

expected	to	cut	in	the	forward	(resp.	reverse)	direction	
The	input	file	contains	the	following	fields:	

• begin1	and	begin2:	position	of	first	base	to	be	sequenced	in	read	1(resp.	read	2).	
Here	we	assume	begin1<begin2,	but	the	file	will	be	sorted	to	ensure	this	condition.	

• strand	information	for	each	mapped	read	
• re.up1,	re.up2:	position	of	upstream	restriction	site	
• re.dn1,	re.dn2:	position	of	downstream	restriction	site	
• length1,	length2:	length	of	mapped	sequence	

And	the	following	are	generated	on	the	fly:	
• re.closest1,	re.closest2:	position	of	downstream	restriction	site	
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Supplementary	 Figure	 11.	 Hi-C	 diagnostic	 plots.	 A)	 Distribution	 of	 the	 end-to-end	
distance	 of	 dangling,	 rejoined	 and	 random	 reads.	 Left:	 Rao	 HIC003	 using	 MboI	 in	
GM12878	[4],	right:	Jin	hESC	HindIII	replicate	A	[63].	In	both	experiments,	the	majority	of	
sonication	 fragments	 were	 less	 than	 700	 base	 pairs	 in	 size.	 We	 can	 therefore	 set	 the	
maxlen	parameter	to	700	or	above.	B)	Histogram	of	dangling	reads	around	cut	site.	Left:	
Caulobacter	NcoI	dataset	[28],	right:	Rao	HIC050	using	MboI	in	IMR90	[4].	Dangling	ends	
are	produced	with	 an	 overhang	of	 4	 nucleotides	 in	 both	 cases.	 Since	by	 convention,	 the	
start	of	the	overhang	is	at	position	0	on	the	forward	strand,	it	will	be	at	position	3	on	the	
reverse	strand.		We	can	therefore	set	the	parameters	dangling.L	to	0	and	dangling.R	to	3.	
C)	Average	number	of	counts	per	cut	site	intersection,	as	a	function	of	distance.		Left:	Rao	
HIC023	using	MboI	in	GM12878,	right:	Jin	IMR90	HindIII	replicate	F	[63].	Binless	does	not	
model	the	increase	at	very	small	distances.	We	can	therefore	set	dmin	to	1000.	

	 	



	

Supplementary	 Figure	 12:	 Computational	 requirements.	 A:	 Runtime	 (in	 minutes)	
coloured	 by	 infrastructure.	 Upper	 panel:	 5kb	 base	 resolution.	 Lower	 panel:	 20kb.	 B:	
Runtime	 coloured	 by	 dataset.	 C:	 Memory	 usage	 (in	 Gb)	 coloured	 by	 infrastructure.	 D:	
Memory	usage	coloured	by	dataset.	
	 	



 

	
Supplementary	 Figure	 13.	 Example	 of	 subset	 matrices	 to	 estimate	 parameters	 for	 fast	
binless.	Signal	detection	and	the	corresponding	values	of	λ2	and	α	 in	submatrices	of	 increasing	
size	 (columns),	 for	 successive	 overlapping	 regions	 (rows).	 Lower	 triangle	 is	 raw	 data,	 while	
upper	triangle	is	binless	signal	matrix	
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Supplementary	 Figure	 14.	 Comparison	 of	 signal	 detection	 in	 submatrices	 normalized	 with	
optimized	 binless	 and	 the	 corresponding	 section	 of	 the	 full	 chromosome	normalized	with	 Fast	
binless.	
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Supplementary	 Figure	 15.	 Binned	matrices	 for	 the	TBX3	 locus	 (chr12:114M-117M,	
dataset	 GM12878	 from	 [4]).	 Although	 both	 the	 data	 and	 the	 biases	 are	 binless	 by	
definition,	the	matrices	can	be	represented	at	different	resolutions.	Raw	data	(observed)	
is	used	to	estimate	the	decay	and	the	genomic	biases,	which	are	then	used	to	normalize	
the	final	datasets	to	obtain	the	normalized	matrix	and	its	standard	deviation	(sd),	which	is	
an	estimate	of	the	uncertainty	of	the	data.	
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1 Preprocessing
When two cut sites are too close, the fragment that spans them can become unmap-
pable. This lack of mappability, in turn, results in an inflation of zeros at these cut
sites, a fact that is not captured by the model below. To avoid this issue, we fuse cut
sites that are closer than a minimum distance (dfuse, default 5 bases). The position of
the new cut site is taken as the mean of the position, rounded to the nearest integer.
Observed counts are taken to be the sums of the respective counts of each cut site
intersection.

PCR artifacts can result in strong long-distance interactions that have no relevance
to what should be detected. To remove these artifacts, we fit the histogram built by
aggregating count*log(distance) in 20 bins of equal size, where count is the number
of reads in one of the four count categories, at each cut site intersection. From largest
to lowest count*log(distance), we mark all counts as artifacts as long as they all fall
above the fitted line. The value of the count is then set to 1 for these artifacts.

2 Binless model

2.1 Likelihoods
Let DL

i

be the number of left-dangling reads at cut site i. Similarly, write DR

i

and
RJ

i

for right-dangling and rejoined reads. Let cfar
ij

be the number of reads found in
the "contact far" category (Fig. 6D) between cut sites i and j. Similarly, define c

close
ij

for "contact close", cup
ij

for "contact up" and c

down
ij

for "contact down. The exact model
takes the form of the following negative binomial regression
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where i and j are two cut sites with i < j. In our parametrization, NB(x,↵) has mean
x and variance x+ x

2

/↵. In this Generalized Additive Model (GAM) [1–3], log ◆, and
log ⇢ are smooth functions of the genomic position, log f is a smooth monotonically
decreasing function of the log distance between cut sites, in bases, and log s is a
smooth and sparse signal estimate. Counts, dangling ends and rejoined ends are
given a different offset (eeC , e

eDE , e

eRJ). Each dataset is given a separate offset,
to account for differences in sequencing depth. Datasets with different restriction
enzymes have different sets of genomic biases (◆ and ⇢). Depending on context,
they can also be given a different diagonal decay (f), a choice left to the user. If
differences in the diagonal decay are relevant to the analysis, only one decay should be
modelled; if differences are assumed to have a purely technical origin (such as using
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two restriction enzymes with very different cutting paterns), each dataset should
be assigned a different decay. Note that to avoid modelling too small distances, a
minimum distance is introduced, and all contacts below that threshold (dmin, default
1kb) are not modelled. In addition, we fuse cut sites that are closer than a given
distance (default 5 bases). In the remaining of this section, we assume to simplify the
notation that there is only one dataset.

2.2 Priors for the genomic and decay biases
To obtain the desired smoothness of log ◆, log ⇢ and log f, we we follow the Bayesian
formulation of GAM by Lang and Bretzger [4, 5] with some modifications. Each
smooth is built with a cubic spline base on the independent variable, as is done
traditionally in the P-spline formulation [6] of GAM [2]. Let g be one such smooth
built on the variables {x

i

}
16i6N

, and g ⌘ (g
1

, . . . ,g
N

) with g

i

⌘ g(x
i

). In the cubic
spline base, g

i

=
P

K

j=1

�

j

B

j

(x
i

) where B

j

is one of K cubic splines placed at equidistant
knots [6]. Equivalently, we can write g ⌘ Xg�g, where Xg is a N⇥K matrix and �g

the coefficients on the spline. For the genomic splines, we place a standard normal
distribution on �g. For all splines, we place a degenerate normal distribution on the
second-order differences on �g with zero mean and variance 1/(K�

g

). Finally, we
place a half-normal hyperprior on �

g

, as recommended for variance parameters [7],
with � = 1 for the decay spline, and � = 10

-4 for the genomic splines.
The prior on the differences on �g amounts to a uniform prior on two coefficients,

and a well-defined normal distribution on the remaining coefficients [2, section 4.8.2
p. 187]. The scaling factor K is there to ensure that the values of the penalties are
approximately independent of the number of basis functions and the span of the
spline.

Identifiability is ensured by enforcing the mean of each smooth to be zero. We
choose not to incorporate this nor any other constraint in the design matrix, but
instead push it to the coefficients. For the genomic biases ◆ and ⇢, this allows us to
exploit the sparsity of X, owing to the compact support of cubic splines. We use a
default of 50 basis function per kilobase. For the monotonically decreasing spline f,
we constrain the parameters �f to be ordered. We use a default of 10 basis functions
per distance decade.

2.3 Prior for the signal
Signal modelling is made with the help of the gfl package [8], which is a fast and
parallelizable implementation of the weighted fused lasso on a graph. We bin the
data at a fixed resolution and place the lasso coefficients on a triangle grid (the Hi-C
matrix is symmetric), penalizing neighboring coefficients (penalty �

2

). Sparsity of the
solution is enforced by placing an L1 prior on the coefficients themselves (penalty �

1

).
It can be computed for any �

1

> 0 by soft-thresholding the solution for �
1

= 0, owing
to the fact that grid cells do not overlap.
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Since we are not aware of a proper prior for the 2D fused lasso on a triangle grid,
we use the Bayesian Information Criterion (BIC) to optimize the fusion, sparsity and
offset parameters. The sparsity penalty �

1

cannot be smaller than the target precision.
The fusion penalty �

2

cannot be smaller than 0.1. Because we want to represent the
excess signal compared to the local background, we impose log s > 0, which is an
additional constraint on �

1

and the offset.

3 Normalization
For N cut sites, there are 2N(N - 1) + 3N likelihoods to be evaluated. To avoid
this quadratic scaling, we use the Iteratively Re-weighted Least Squares (IRLS)
approximation. The IRLS allows to compute an exact solution to regression problems
based on distributions from the exponential family [2, pp. 63-67]. A single evaluation
of a costy likelihood is replaced by a quick iteration of least squares estimates
followed by weight updates. Using the property that products of normal likelihoods
are themselves normal, we reduce the number of likelihoods to 5N in the IRLS cycle,
as we now explain.

We start with the normal approximation to the log likelihood of the counts (eq.
2), as is done for distributions from the exponential family [2, pp. 63-67]. Write
c

ij

⇠ NB(µ
ij

,↵). Then the IRLS approximation states that, at iteration k, we can
optimize the objective function

S

[k] = -
1

2

N-1X

i=1

NX

j=i+1

(z
[k]
ij

+ logµ

[k]
ij

- logµ

ij

)2

�

[k]
ij

2

(3)

where the superscript [k] indicates that the coresponding parameters are held fixed
at the initial value at iteration k, and

z

[k]
ij

⌘
c

ij

- µ

[k]
ij

µ

[k]
ij

(4)

�

2

ij

⌘ 1

µ

2

ij

 

µ

ij

+
µ

2

ij

↵

!

(5)

S

[k] has the same first and second derivatives with respect to logµ

ij

as the log likeli-
hood (eq. 2) at the maximum. In other words, if the dispersion is held constant, a like-
lihood of the form c

ij

⇠ NB(µ
ij

,↵) can be replaced by z

[k]
ij

+ logµ

[k]
ij

⇠ N (logµ

ij

,�[k]
ij

).
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3.1 Genomic biases
IRLS likelihood Write µ

ij

= e

eC
a

i

b

ij

. We hold all parameters relative to index j

fixed during iteration k. Therefore S

[k] simplifies as

S

[k]
g

= -
1

2

NX

i=1

NX

j=1

j 6=i

(z
[k]
ij

+ ⌘

[k]
i

- ⌘

i

)2

2�

[k]
ij

2

(6)

⌘

i

⌘ e

C

+ loga

i

(7)

Grouping all terms involving j, we get

S

[k]
g

= -
1

2

NX

i=1

2

664
NX

j=1

j 6=i

(z
[k]
ij

+ ⌘

[k]
i

- ⌘̂

[k]
i

)2

2�

[k]
ij

2

+
(⌘̂

[k]
i

- ⌘

i

)2

�

[k]
i

2

3

775 (8)

⌘̂

[k]
i

⌘

P
N

j=1

j 6=i

(z
[k]
ij

+ ⌘

[k]
i

)/�
[k]
ij

2

P
N

j=1

j 6=i

1/�

[k]
ij

2

1

�

[k]
i

2

⌘ 1

2

NX

j=1

j 6=i

1

�

[k]
ij

2

(9)

Therefore, to optimize the genomic biases, we can use the approximate genomic
likelihood

⌘̂

[k]
i

⇠ N
⇣
⌘

i

,�[k]
i

⌘
(10)

However, since the model likelihoods involve either ◆ or ⇢, we write

⌘̂L

[k]
i

⇠ N
⇣
⌘L

i

,�L[k]
i

⌘
⌘̂R

[k]
i

⇠ N
⇣
⌘R

i

,�R[k]
i

⌘
(11)

⌘L

i

⌘ e

C

+ log ◆

i

⌘R

i

⌘ e

C

+ log ⇢

i

(12)

The definitions of ⌘̂L[k]
i

(resp. ⌘̂R[k]
i

) and �L

[k]
i

(resp. �R[k]
i

) is identical to previously,
except that the sums run over “far” and “up” counts (resp. “close” and “down”)
when j > i and over “close” and “up” counts (resp. “far” and “down”) when j < i.

For rejoined and dangling ends, we define

µRJ

i

⌘ e

eRJ
p
◆

i

⇢

i

µDL

i

⌘ e

eDE
◆

i

µDR

i

⌘ e

eDE
⇢

i

(13)

and, with T in place of RJ, DL or DR, we define the IRLS likelihoods
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⌘̂T

[k]
i

⇠ N
⇣
⌘T

i

,�T [k]
i

⌘
(14)

⌘T

i

⌘ logµT

i

(15)

⌘̂T

i

⌘ T

i

e

⌘Ti
- 1+ ⌘T

i

(16)

�T

2

i

⌘ 1

µT

i

+
1

↵

(17)

To speed up the calculation, we take advantage that the vast majority of the counts
c

ij

are usually zero. We do not store these counts explicitly. Instead, we track the
number of zeros per distance bin, signal bin and cut site side (left or right). We use
z

ij

= -1 and µ

ij

= exp(e
C

)b
i

f

l

s

k

, where b

i

is the bias (◆ or ⇢) of cut site i, f
l

is the
decay at distance bin l and s

k

the signal contribution at signal bin k (see below).

Posterior For the genomic biases, there is only a centering constraint. There is no
offset, since it is fitted separately. Further, the posterior is separable in datasets which
have different enzymes, since they will have different biases. We therefore compute
their IRLS updates separately. For datasets having a common bias, the previous
section showed the data can be put in a vector ⌘̂T

[k] of size N (assuming N distinct
cut sites across these datasets). There are two biases to model, ◆ and ⇢, which should
be centered with respect to the weight vector w ⌘ 1

N

. Dropping the subscript k,
define

y ⌘

0

BBBB@

⌘̂RJ

⌘̂DL

⌘̂DR

⌘̂L

⌘̂R

1

CCCCA
W ⌘

0

BBBBBBBBBBBBBB@

0 0

...
...

0 0

1 0

...
...

1 0

0 1

...
...

0 1

1

CCCCCCCCCCCCCCA

(18)

where y is a vector of size 5N and W is a 5N⇥ 2 matrix with the first 3N rows equal
to zero. Assume we can write

X ⌘
�
X

◆

X

⇢

�
⌘

0

BBBB@

X

1

/2 X

1

/2

X

1

0

0 X

1

X

1

0

0 X

1

1

CCCCA
D ⌘

✓
�

◆

D

1

0

0 �

⇢

D

1

◆
� ⌘

✓
�

◆

�

⇢

◆
(19)
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with X

1

being a N⇥ K cubic spline base (X
1ij

is the cubic spline j evaluated at the
position of cut site i), X 5ND⇥ 2K, D

1

a (K- 2)⇥K second-order difference matrix, D
(2K- 4)⇥ 2K and � a vector of size 2K. The two centering constraints are 1

>
X

◆

�

◆

= 0

and 1

>
X

⇢

�

⇢

= 0, or equivalently W

>
X� = 0 where W selects either of the two biases.

Then, incorporating the constraint with the Lagrange multiplier µ ⌘ (µ
◆

,µ
⇢

)>, the
log posterior is

L =-
1

2

(y-X�)>S-2(y-X�)- µ

>
W

>
X�

+
X

i=◆,⇢

"

-
K

2

�

2

i

2

�

>
i

D

>
1

D

1

�

i

+ (K- 2) log �

i

-
�

2

i

2�

2

#

(20)

We solve for µ, � and �, yielding

A ⌘ X

>
S

-2

X+K

2

D

>
D (21)

� ⌘ 1 -X

>
W(W>

XA

-1

X

>
W)-1

W

>
XA

-1 (22)

� ⌘ A

-1

�X

>
S

-2

y (23)

�

i

=

s
K- 2

K

2

�

>
i

D

>
1

D

1

�

i

+ 1/�

2

i = ◆, ⇢ (24)

Implementation notes X

1

is band diagonal and therefore X is sparse. We perform a
simplicial Cholesky decomposition of A. We follow the performance iteration scheme
[2], in which we update �

i

at each IRLS step. Final estimates of log ◆ = X

1

�

◆

and
log ⇢ = X

1

�

⇢

are centered after a complete IRLS estimation, because we observe it
gives better numerical stability.

3.2 Diagonal decay
IRLS likelihood To estimate the diagonal decay, we proceed similarly to previously,
with the difference that we bin the log-distance to fractions of the support of each
basis function (by default, we use 10 bins per basis function). Assume that f

ij

is
constant equal to f

l

within such a bin l, with B

l

being the set of corresponding indices.
The distance of this bin is taken to be the geometric mean of the distance of all
counts falling in this bin. An otherwise identical procedure leads to the approximate
likelihood
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̂

[k]
l

⇠ N
⇣


l

,�[k]
l

⌘
(25)



l

⌘ e

C

+ log f

l

(26)

̂

[k]
l

⌘
P

(i,j)2Bl
(z

[k]
ij

+ 

[k]
l

)/�
[k]
ij

2

P
(i,j)2Bl

1/�

[k]
ij

2

(27)

1

�

[k]
l

2

⌘
X

(i,j)2Bl

1

�

[k]
ij

2

(28)

where the sums are understood to span over all four count types. Note that to match
the original definition of e

C

, we have
P

l

|B
l

| log f

l

= 0 where |B
l

| is the number of
cut-sites in distance bin B

l

. Again, we take advantage that the vast majority of the
counts c

ij

are usually zero to compute ̂

i

efficiently.

Posterior The decay is centered and constrained to decrease. We use quadratic
programming to enforce the monotonicity, but leave the centering to a final adjustment.
The centering matrix is

C ⌘

0

BBBBBB@

1 0 · · · 0

-1 1

. . . ...

0 -1

. . .
0

... . . . . . .
1

0 · · · 0 -1

1

CCCCCCA
(29)

C is K⇥ (K-1) and the constraint is C>
� > 0. The multipliers are ⇤

> ⌘ (�
1

, · · · , �
K-1

)
for C. The extended target is

L =-
1

2

(̂-X�)>S-2(̂-X�)

-
K

2

�

2

2

�

>
D

>
D�+ (K- 2) log �-

�

2

2�

2

-⇤

>
C

>
� (30)

where X is a N⇥K cubic spline base (assuming there are N decay bins and K basis
functions) and D is a (K- 2)⇥K second-order difference matrix. The solution for �

can be given explicitly

� =

s
K- 2

K

2

�

>
D

>
D�+ 1/�

2

(31)
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Implementation notes We use the quadprog R package to compute the solution
to �. We follow the performance iteration scheme [2], in which we update �

i

at
each IRLS step. The final estimate of log f = X� is centered after a complete IRLS
estimation. For the centering weights, we use the number of contacts in each decay
bin.

3.3 Exposures
To estimate the exposures e

C

, e
RJ

and e

DE

for each dataset, we proceed similarly to
previously. Here the problem reduces to one group per count type and dataset. Since
there is only a uniform prior on each coefficient, we can give the final estimates with
the IRLS likelihood alone

e

[k+1]
d,T ⌘

P
i2Dd,T

(z
[k]
i

+ e

[k]
d,T )/�

[k]
i

2

P
i2Dd,T

1/�

[k]
i

2

(32)

where D

d,T is the collection of indices pertaining to dataset d and count type T =
RJ,DE,C.

3.4 Signal
IRLS likelihood In this step, we update both the signal and the count offsets e

C

. We
bin the genome in regularly spaced intervals (default 5k base resolution). Therefore,
every cut-site intersection falls into a pair of bins. The signal s is assumed to be
constant in such a pixel, with B

ll

0 being the set of corresponding cut-site indices. An
otherwise identical procedure leads to the approximate likelihood

�̂

[k]
ll

0 ⇠ N
⇣
�,�[k]

ll

0

⌘
(33)

�

ll

0 ⌘ log s

ll

0 (34)

�̂

[k]
ll

0 ⌘
P

(i,j)2Bll 0
(z

[k]
ij

+�

[k]
ll

0)/�
[k]
ij

2

P
(i,j)2Bll 0

1/�

[k]
ij

2

(35)

1

�

[k]
ll

0
2

⌘
X

(i,j)2Bll 0

1

�

[k]
ij

2

(36)

where the sums are understood to span over all four count types. Again, we take
advantage that the vast majority of the counts c

ij

are usually zero to compute �̂

ll

0

efficiently.
Because some portions of the data are not captured well by the background model,

we set their contribution during signal estimation to zero. For that purpose, we form
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a genomic z-score Z

l

by standardizing the following quantity

Z̃

l

⌘
P

(i,j)2Rl zij/�ijP
(i,j)2Rl 1/�

2

ij

(37)

Here, R
l

⌘
S

l

0 B
ll

0 . We set �[k]
ll

0 = +1 for all signal bins for which the two-tailed
probablility of observing Z

l

or a more extreme value is lower than qmin (0.01 by
default). In addition, all signal bins that contain data below the minimum distance
(dmin, default 1kb) are discarded as well.

Posterior Writing b = ll

0 and dropping the superscript k, the target is

L = -
1

2

X

b

 
�̂

b

-�

b

- e

0
C

�

sb

!
2

- �

2

X

b,b 0 neighbors

|�
b

-�

b

0 |-
X

b

�

1

|�
b

| (38)

During normalization, we maintain �

2

= 2.5, and estimate �

b

, e 0
C

and �

1

. We only
perform one IRLS iteration. In absence of a proper prior for the 2D weighted graph
fused lasso, we use the BIC to optimize �

1

and e

0
C

BIC =
1

2

X

b

 
�̂

b

- �̃

b

(�
1

)- e

0
C

�

sb

!
2

+ log(nobs)dof(�1) (39)

with �̃

b

(�
1

) = S

�1
(�

b

) the solution of the fused lasso soft-thresholded at �
1

, nobs the
total number of cut site intersections considered, and dof(�

1

) the degrees of freedom
of the fused lasso, i.e. the total number of nonzero patches of constant �̃

b

. Finally,
we update e

C

by adding e

0
C

to the previous estimate.

Implementation We use the gfl package [8] to compute the solution for � at �
1

=
e

0
C

= 0 and �

2

fixed. For the tolerance, we use a value 20 times stricter than the one
requested for the general computation (default 0.005). Then, we estimate �

1

and e

0
C

simultaneously as follows. We first build a sorted list of n independent values for �
b

,
augmented by a larger element: �

1

< �

2

< . . . < �

n

< �

n+1

⌘ �

n

+ 1. Then, for each
pair of successive values, we set

�

1

=
�

i+1

-�

i

2

e

0
C

=
�

i+1

+�

i

2

(40)

and compute the BIC. We retain the values for �

1

and e

0
C

which have the smallest
BIC.

Computation of the degrees of freedom is performed as follows. We first build
a graph with as many vertices as there are bin pairs (i.e. the dimension of �). We
connect two vertices b and b

0 both if they are neighbors, and if |�
b

-�

0
b

| is smaller
than the general tolerance. The degrees of freedom is the number of connected
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components of the graph.

3.5 Dispersion
The IRLS applies only to the exponential family, to which the negative binomial
belongs at fixed dispersion. In this step therefore, we estimate the dispersion ↵ by a
maximum likelihood procedure on a subset of the counts. All counts and biases are
taken from a number of rows (default 100) and their estimated means are computed.
For each row, a maximum likelihood estimate of the dispersion is computed using a
procedure adapted from the MASS R package. The retained dispersion is the median
of these estimates. This estimate cannot take values smaller than a threshold (0.01 by
default).

3.6 Procedure
Sup. Fig. 1b presents a flowchart of the normalization procedure. The estimation of
all parameters is achieved by optimizing the diagonal decay, the genomic biases, the
signal and the remaining parameters in an iterative way. To initialize the estimation,
we fix the dispersion (default 0.1), the values of the exposures, ◆, ⇢ and f to their
Poisson estimates, and log s is set to zero. First, the background model is fitted
while the signal component is held zero. For speed purposes, the residuals (z

ij

and �

ij

variables above) are computed only once per iteration. Once converged (or
reached a maximum of 5 steps by default), the decay is held constant and the signal
is fitted concurrently with the unconstrained genomic biases, the exposures and the
dispersion. Residuals are computed twice, once for background estimates, and once
for the signal. The algorithm is run until the specified number of coordinate descent
iterations is reached or until all biases change less than a relative threshold (default
10

−1). It is advised to check that convergence has been achieved, at least by verifying
that the four objectives of the four separate optimizations reach a plateau.

4 Interaction and di�erence detection

4.1 Interaction detection
Interaction detection is similar to the procedure performed during normalization, but
only seeks to optimize the signal � and corresponding parameters �

1

and �

2

. All
other parameters are held fixed. Using the same conventions as in section 3.4, we
write the target as

L = -
1

2

X

b

✓
�̂

b

-�

b

�

sb

◆
2

- �

2

X

b,b 0 neighbors

|�
b

-�

b

0 |-
X

b

�

1

|�
b

| (41)
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with the constraint that �
b

> 0. During interaction detection, we optimize �

2

and �

1

at each IRLS iteration. Again, we use the BIC to optimize �

2

and �

1

BIC =
1

2

X

b

✓
�̂

b

- �̃

b

(�
1

)

�

sb

◆
2

+ log(nobs)dof(�1) (42)

�

2

is optimized while holding �

1

fixed and equal to zero. First, a rough minimum
of the BIC is found by gridding. 25 log-spaced values for �

2

are generated between 0.1
and 100. The values flanking the minimum are used as boundaries for the refinement.
We use the one-dimensional optimization function provided by R for that purpose.
By default, 50 IRLS iterations are performed at most for every evaluation at a given
�

2

.
Optimization of �

1

is identical to what has been described in section 3.4, with the
exception that the minimum admissible value of �

1

is max(0,-min(�)) to guarantee
the positivity of the final solution.

4.2 Binless di�erence detection
When computing differences, we modify the likelihoods containing a signal contribu-
tion in the following way

8(i, j) 2 B

b

�
c

ij1

⇠ NB(e�b ref
µ

ij ref,↵)
c

ij2

⇠ NB(e�b ref+�b
µ

ij

,↵)
(43)

The target is

L =-
1

2

X

b

2

4
 
�̂

[k]
b ref -�

b ref

�

[k]
sb ref

!
2

+

 
�̂

[k]
b

-�

b ref - �

b

�

[k]
sb

!
2

3

5

- �

2

X

b,b 0 neighbors

|�
b

- �

b

0 |- �

1

X

b

|�
b

| (44)

We do not enforce any sign constraint on �

b

, but we enforce �

b ref > 0. Therefore, at
each IRLS iteration, we compute �,

�

b ref = max

�
�̂

[k]
b ref/�

[k] 2
b ref + (�̂

[k]
b

- �

b

)/�
[k] 2
b

1/�

[k] 2
b ref + 1/�

[k] 2
b

, 0

✏

(45)

and finally �̂

[k+1] for the next IRLS iteration until convergence.
To optimize �

2

and �

1

, we proceed as described in the previous subsection. The
minimum value for �

1

is set by the numerical tolerance imposed on the procedure.
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5 Binned matrices

5.1 Available matrices
The number of count types in bin b is simply

ncounts
b

⌘ 4 |B
b

| (46)

The raw, or observed matrix is the sum of counts in that bin

observed
b

⌘
X

(i,j)2Bb

c

up
ij

+ c

down
ij

+ c

close
ij

+ c

far
ij

(47)

The background matrix is the sum of all background means

background
b

⌘
X

(i,j)2Bb

X

t2Types

µ

t

ij

=
X

(i,j)2Bb

e

eC(◆
i

+ ⇢

i

)(◆
j

+ ⇢

j

)f
ij

(48)

The associated standard deviation is

background.sd
b

⌘

0

@
X

(i,j)2Bb

X

t2Types

µ

t

ij

+
µ

t

ij

2

↵

1

A
1/2

(49)

Note that we also sum over cut site intersections at which no ligation event was
observed.
The fitted diagonal decay can be displayed in matrix form, and is

decaymat
b

⌘ 1

ncounts
b

X

(i,j)2Bb

4f

ij

(50)

The fitted biases can be aggregated and displayed in matrix form, and are

biasmat
b

⌘ 1

ncounts
b

X

(i,j)2Bb

◆

i

+ ◆

j

+ ⇢

i

+ ⇢

j

(51)

The residual matrix is the observed matrix divided by the expected (i.e. back-
ground+signal) matrix.
For comparison to other normalization methods, we propose “normalized” matrices.
These matrices correspond to the data corrected by genomic biases and sequencing
depth only. However, we strongly encourage users to work on binless matrices (see
below) whenever possible.
The binless signal matrix is exp� put in matrix form. Note that the binless signal
matrix is always greater than one. When there is no signal, the binless signal matrix
equals one.
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The binless matrix is the sum of the binless signal matrix and the decay matrix
The binless difference matrix is exp � put in matrix form. Note that the difference
matrix is always positive, and when there is no significant difference, its value is 1.

5.2 Grouping
Sometimes, it can be sought to combine, for example, multiple biological replicates
into a single dataset. These grouped matrices are obtained in a procedure identical to
previously, with the difference that a given bin B

b

now contains data from all datasets
to be grouped.

6 Fast binless

6.1 Model
Normalization and interaction detection Fast binless is an approximation to the
previous model, aimed at large datasets. Its input is a matrix of raw data, at the
desired base resolution. Biases found on the diagonal are not used. Let c

ijk

be the
number of contacts (in all categories) observed for dataset k in bin (i, j) with i <= j,
and n

ijk

the number of cut site intersections in that bin. The likelihood is

c

ijk

⇠ NB(eeCk
b

i

b

j

f

ij

s

ijk

,↵) (52)

We model b and f using a GAM, and s using the sparse weighted fused lasso on the
upper corner of a 2D square grid. For the genomic bias b

i

, we assume each count
c

ijk

was observed at the center of bin i. For the decay bias f

ij

, we assume count c
ijk

was observed at the distance between bin centers j and i. b (and f) is centered by
using the weights provided in n

ijk

, summed along a row (resp. counter-diagonal). f
is constrained to be monotonically decreasing except close to the diagonal (default
10kb).

Fast binless seeks to determine a signal matrix s

ijk

at a fixed �

1

, �
2

and ↵. It
follows the same design and procedures than the exact implementation described in
the previous sections, but on a binned representation of the data, and with a more
efficient and scalable C++ implementation. To speed up the calculation even more,
the normalization can be restricted to a maximum distance.

Di�erence detection For differences with respect to a reference, the model becomes

c

ij1

⇠ NB(eeC1
b

i

b

j

f

ij

s

ij ref,↵) (53)

c

ij2

⇠ NB(eeC2
b

i

b

j

f

ij

s

ij refe
�ij ,↵) (54)

The only estimation performed is that of s ref (using eq. 45) and � using the fused
lasso. All other parameters are held fixed to their optimum.
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6.2 Estimation of parameters
We estimate the dispersion parameter ↵, the soft-thresholding �

1

and the neighbour
fusion penalty �

2

of the fused lasso regression by normalizing selected small regions
of the full matrix with optimized binless and use them for the normalization of the
full matrix with fast binless. Squared submatrices of constant size are selected along
the diagonal, where TADs and loops (features referred as signal for now on) are
located.

�

2

penalizes differences between neighboring values. It is the most important
parameter in the estimation. Optimized binless spends most of its time optimizing
that parameter. Too high values will favor the fusion of features with the surrounding
contacts flattening the result and preventing its detection as signal while too low
values will highlight many isolated contacts instead of grouping them as a single
feature. Sup. Fig. 13 shows some examples of the variation of �

2

of submatrices of
increasing size and the corresponding signal matrix.

Optimized binless does not detect signal in some matrices spanning 400kb (left
column). For these matrices, there are either no features or those are not statistically
significant, and the value of �

2

is high. When we increase the size of those matrices
and features are detected, the value of �

2

drops and remains low with larger sizes.
When signal is detected in the 400kb window, the value of �

2

remains low, even if the
feature is surrounded by regions with no signal. This fact suggests that the minimum
value of �

2

in the submatrices is a good estimation for bigger matrices containing
them.

The normalization of every submatrix to find the lowest value of �
2

requires too
much processing time for the procedure to be efficient. Therefore a pre-selection of
submatrices is needed based on some statistics that can be calculated much faster.
Different statistics (kurtosis, skewness, standard deviation, number of counts and
standard deviation of the directionality index (DI) ) have been evaluated to see if they
are good predictors of low values of �

2

. The standard deviation of the directionality
index (DI) has been chosen as a good predictor. The DI varies considerably in the
positions of TAD boundaries and therefore its standard deviation will be higher in
matrices containing those boundaries as compared to matrices where no boundaries
exist.

For the normalization of full chromosomes, submatrices of 600Kb at 5kb base
resolution ( 2400kb at 20kb base resolution ) are extracted every 100kb from the full
matrix. Regions containing features usually have higher interaction counts. Therefore,
candidates with low number of counts compared to the average are discarded.

The standard deviation of the DI is then calculated in the remaining candidates. A
subset of them having high values of the statistic are normalized using optimized
binless. The submatrix with the lowest �

2

is then selected to provide ↵ and �

2

for
the normalization of the full chromosome with Fast binless. We use �

1

= 0 for the
normalization using fast binless and threshold the signal matrix a posteriori.

To calculate the value of �
1

we consider the hypothesis corroborated by the observed
matrices of the absence of signal far out the diagonal. This also corresponds to the
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bet-on-sparsity principle essential for proper working of sparse fused lasso. Therefore
we set the thresholding parameter �

1

equal to the median of the signal at distances
larger than 25Mb.

In Sup. Fig. 14 we present the results of the procedure by comparing the signal
of submatrices selected as predictors of �

2

and ↵ normalized with optimized binless
and the same region of the full chromosome normalized with fast binless.
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